Modeling nanopores for sequencing DNA.
نویسندگان
چکیده
Using nanopores to sequence DNA rapidly and at a low cost has the potential to radically transform the field of genomic research. However, despite all the exciting developments in the field, sequencing DNA using a nanopore has yet to be demonstrated. Among the many problems that hinder development of the nanopore sequencing methods is the inability of current experimental techniques to visualize DNA conformations in a nanopore and directly relate the microscopic state of the system to the measured signal. We have recently shown that such tasks could be accomplished through computation. This chapter provides step-by-step instructions of how to build atomic scale models of biological and solid-state nanopore systems, use the molecular dynamics method to simulate the electric field-driven transport of ions and DNA through the nanopores, and analyze the results of such computational experiments.
منابع مشابه
Computational studies of DNA sequencing with solid-state nanopores: key issues and future prospects
Owing to the potential use for real personalized genome sequencing, DNA sequencing with solid-state nanopores has been investigated intensively in recent time. However, the area still confronts problems and challenges. In this work, we present a brief overview of computational studies of key issues in DNA sequencing with solid-state nanopores by addressing the progress made in the last few year...
متن کاملStretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic mode...
متن کاملGeometric Effects on Nanopore Creation in Graphene and on the Impact-withstanding Efficiency of Graphene Nanosheets
Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...
متن کاملControlling DNA capture and propagation through artificial nanopores.
Electrophorescing biopolymers across nanopores modulates the ionic current through the pore, revealing the polymer's diameter, length, and conformation. The rapidity of polymer translocation ( approximately 30,000 bp/ms) in this geometry greatly limits the information that can be obtained for each base. Here we show that the translocation speed of lambda-DNA through artificial nanopores can be ...
متن کاملTowards Tunneling Electrodes for Nanopore-based DNA Sequencing
The advent of DNA sequencing has revolutionized fundamental research and brought incredible hope for personalized medicine. However, the race still continues for cheaper and faster techniques that can surpass conventional methods and ultimately reach the $1000 genome goal. This thesis describes the fabrication and first characterizations of nanopores-based devices with embedded tunneling electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in molecular biology
دوره 749 شماره
صفحات -
تاریخ انتشار 2011